发布网友 发布时间:2024-10-24 13:20
共5个回答
热心网友 时间:2024-10-27 03:30
要证1/c=1/b+1/a由正铉定理只须证明1/sinC=1/sinB+1/sinA即可。
只须证sinC(sinB+sinA)=sinBsinA
因为 A:B:C=4:2:1,A=4C,B=2C
sinC(sinA+sinB)-sinBsinA
=2sinCsin[(A+B)/2]cos[(A-B)/2]-sin2Csin4C (和差化积)
=2sinCsin[(π-C)/2]cos[(4C-2C)/2]-sin2Csin4AC
=2sinCcos(C/2)cosC-sin2Csin4C
=sin2C[cos(C/2)-sin4C]
又7C=π
C=π/7
所以cos(C/2)-sin4C=cos(π/14)-sin(4π/7)
=cos(π/14)-sin(π/2+π/14)
=cos(π/14)-cos(π/14)
=0
得证.
热心网友 时间:2024-10-27 03:30
由A+B+C=180和A:B:C=4:2:1得,A=4π/7,B=2π/7,C=π/7,
由正弦定理得a/sinA=b/sinB=c/sinC=1/k,
a=sinA/k,b=sinB/k,c=sinC/k,故
1/a+1/b=k/sinA+k/sinB=k(sinA+sinB)/(sinAsinB)
=2ksin((A+B)/2)cos((A-B)/2)/(sinAsinB)
=2ksin(3π/7)cos(π/7)/(sin(4π/7)sin(2π/7))
=2ksin(3π/7)cos(π/7)/(2sin(4π/7)sin(π/7)cos(π/7))
=ksin(3π/7)/(sin(4π/7)sin(π/7))
=ksin(4π/7)/(sin(4π/7)sin(π/7))
=k/sin(π/7)=k/sinC=1/c
0
=kcos20/(2sin80sin20cos20)
=√3k/(2sin80sin20)=(√3/(2sin80))*(1/c)=
热心网友 时间:2024-10-27 03:26
楼上太牛B了,A+B+C=80+40+20=140还能是一个三角形么?
热心网友 时间:2024-10-27 03:28
a/sinA=b/sinB=c/sinC
A+B+C=180
A=80,B=40,C=20
自己化简一下,很简单。
热心网友 时间:2024-10-27 03:24
根据题意,A=4C B=2C
由正弦定理,a/SinA=c/SinC =>a=SinA*c/SinC,把A=4C代入上式得a=4cCos2CCosC
同理得,b=2cCosC
所以,1/a+1/b=1/4cCos2CCosC +1/2cCosC
代入整理即可得到右式