发布网友 发布时间:2022-04-22 01:18
共1个回答
热心网友 时间:2023-05-06 05:55
圆的切线证明常用方法和技巧如下:
方法一:切点已知,作半径,证垂直
已知切点(该点在未确定前不能称之为切点),即当直线与圆有公共点时,选择作半径,即连接圆心与该公共点,证明垂直,常见证明垂直的思路有三种。
第一种思路:利用勾股定理的逆定理证明垂直
例题1:如图,AB为⊙O的直径,点P为AB延长线上一点,点C为圆⊙O上一点,PC=8,PB=4,AB=12,求证:PC是⊙O的切线.
分析:证明直线PC为圆O的切线,已知点C在圆上,即切点已知,可连接OC,证明OC⊥PC。根据已知数据可以得到PC=8,OC=6,PO=10,利用勾股定理的逆定理证明∠OCP=90°。连接BC,OC,AC,证△PCB∽△PAC,推出∠PCB=∠A=∠ACO,∠CBA=∠OCB,根据圆周角定理求出∠ACB=∠ACO+∠OCB=90°,推出∠OCP=90°,根据切线的判定推出即可.
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。切线的性质定理:圆的切线垂直于经过切点的半径。根据这两条定理,我们就可以得到证明圆的切线的一般思路:1、连半径,证垂直2、作垂线,证半径