发布网友 发布时间:2022-03-26 21:45
共1个回答
热心网友 时间:2022-03-26 23:14
对应于一组,正如在数学原始概念。我们知道,有个和数字线之间真正的对应关系,点的实数的平面坐标,并下令一名男子与他的名字,一个学生,他的学校,可以看作是对应关系。
对应的是两个集合A和B. A
之间的关系对于每一个元素,有以下三种情况:
比索(1)B有相应的唯一元素。
(2)B,有对应的一个以上的元素。
(3)B是没有相应的元件。
同样,对于B中的每一个元素而言,有以下三种情况:
日(四)在相应的独特元素。
比索(5),有相应的多个元素。
比索(6)没有相应的元素。
相当于在一般情况下,这些情况都可能发生。
2映射
映射是一种特殊的对应关系,学习这个定义时,应注意以下几点:
比索(1)映射为对应的集合从A,B和从A到BF由法律决定。
日(2)中的映射,设置一个“任何元素”有“才”在集合B这不是集合A的元素在集合B中存在的没有,或者案件多于一个的对象(即,将不会在上述(2)(3)在这两种情况下)。
比索(3)在地图上,设置一个状态和B是不平等的。在一般情况下,我们并不要求B的两个元素之间的映射和A是对应于(间的(4)(5)(6)三种情况下都可能发生,即对应)的唯一元素。因此,从映射A到B并从B到A被映射有不同的要求。 A的
日(四)收集,B可以是相同的集合。
3
仿佛原始图像是一个映射f,从A到B,那么A和B在图像B中的对应元素的元素称为,原来的名字图像b的关系可以表示为B = F(A),与原图像的概念和类似物,该映射可以被理解为“A中的每个元素有B中一个独特的图像”对应于这样一个特殊的。由于映射在一般情况下,B,作为元件不一定如此,因为该组(即由所有的图像形成的集合)是B的子集,记为{F(A)|a∈A} IB。